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ABSTRACT  
This work is an overview of a preliminary experience in developing high-performance face detection 

accelerated by GPU co-processors. The objective is to illustrate the advantages and difficulties encountered 

while utilizing the GPU technology to perform face detection. Moreover the introduced implementation is a 

much faster than currently existing techniques. Previous techniques for speeding up face detection are 

illustrated with the advantages and disadvantages of each technique. The experiments with NVIDIA GTX 560 

show that detecting the faces in an image of size [640x480] can process up to 34 frames per second. This in turn 

reflects back the achieved speed that exceeds FPGA. 

KEYWORDS: GPU computing. Viola-Jones face detection  

1. INTRODUCTION 

GPU co-processors revolutionized the many-core platforms resulting in massive raw processing 

power. While the Moore’s law states that the processor power will double every 18 month. Moore’s 

law can be reformulated to state that the numbers of cores on a single chip will double every 18 

months. GPUs were originally designed to handle real-time graphics core for a computer games 

industry. This can be developed to be more generic to handle persistent computationally intensive 

problems like image processing, fluid simulation, data mining and physical simulation. The major 

manufacturers of GPUs developed their tools and compilers for theirs GPUs. This created a demand 

for a standard language available for end users to interact with different GPUs from different 

manufacturers. Khronos group started to develop a standard programming language for the different 

GPUs and collected all parties involved in the GPU industry. They released the first standard 

programming language, “OpenCL 1.0”, which is a modified version of C language with minor 

limitations. 

2. GPU ARCHITECTURE AND OPENCL 

2.1  GPU Architecture 

GPU consists of a scalable array of Streaming Multiprocessors (SMs), where each component consists 

of a number of Scalar Processor (SP) cores. The instruction stream for each SM allows managing 

hundreds of threads such that each SM executes the same code in different threads, while each thread 

is mapped to SP. This technique is known as Single Instruction Multiple Threads (SIMT). All threads 

in the SM execute the same instruction. However, some threads may hold mask flags to skip 

execution. This happens if the branch being executed is not in the current thread execution path.  

Table 1: The different GPU memory types and their usage 

Memory Type Size  Usage hints 

Device Memory 1 – 6 GB 200 – 300 cycles per access to transfer it to L2 Cache 

L2 Cache 512 - 768 KB Shared between SMs. Requires 200 – 300 cycles per access to transfer it to 

L1 Cache 

L1 Cache 16 – 48 KB Shared between SPs with in SM. Requires 80 cycles per access to transfer it 

to the SPs’ registers. 

Registers 32 KB  Those registers are divided among the SPs with in the SM according to the 

kernel local/temp variables sizes. 
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Table 1 shows the different GPU memory types and their usage. All data needs to be moved to 

register(s) before processing the data. Depending on the data location, the operation of fetching 

operands or storing results requires a certain number of machine cycles. Choosing the best location of 

the data is a trade-off between the required memory size and memory access time. Developer may 

consider storing all the data in registers is considered the best strategy. However, this will increase the 

register file required by single SP, and the SM has a limited number of registers to divide evenly 

among its SPs. This will cause only a few SPs in the SM to work at the same time. On the other hand, 

moving all data to L2 and L1 will cause the program to execute more threads per SM at the same 

time. However, it will cause the memory access to take much more time. The best case is to store 

frequently accessed data into registers and keep less-frequently access data into L1 and L2 cache. 

Sometimes, developer needs to store read-only variables that consist of lookup tables or images. The 

best location for such large data is to store it in device memory due to their being exceptionally large. 

Storing data into device memory requires certain arrangement of the Threads inside each SM. This 

allows them to access aligned elements in the device memory to achieve the maximum bandwidth 

between the device memory and the SM. This is called coalesced memory access pattern, which is 

presented in Figure 1. 

Work-items within a wrap

Data array in device memory

1 2 31 32

1 2 3 30 31 32

3 30

4

4

 

Figure 1: The work-items within a SM each 4 threads can access the required data from the device memory in 

one clock cycle if the data/work-items are sorted such that each 4 consecutive work-items access 4 consecutive 

data elements as the GPU memory bandwidth can read large chunks from the device memory 

2.2 OpenCL Programming Model 

OpenCL programs are compiled in runtime by a host application which is responsible for I/O from 

different devices like Camera, Hard Disk, Screen and keyboard. The host application compiles the 

OpenCL program and collects the input from the user; the host application can be programmed using 

standard languages like C++, C# or Java. Then the host program transfers the arguments to the device 

memory. After the required steps are accomplished, the host program invokes a kernel grid with one, 

two, or three dimensions. Each thread is assigned three identifiers to locate its position in the grid. 

Each 32 threads with consecutive IDs are assigned to SM to execute them. The threads are 

programmed to collect the data they supposed to work on by utilizing their IDs. The proposed GPU 

implementation is using 2D grid because the GPU 1D grid length is insufficient. However, in theory, 

the proposed GPU implementation is using 1D grid. Each thread converts the 2D grid identifiers to 

1D identifier by using the equation below: 

𝐼𝐷 = 𝑖𝑑(0) + 𝑖𝑑(1) ∗  𝑠𝑖𝑧𝑒(0) 

Where: 𝑖𝑑(0) returns the first dimension index, 𝑖𝑑(1) returns the second dimension index 

and 𝑠𝑖𝑧𝑒(0) returns the first dimension length. 

The most difficult task in the setup phase and writing the kernel function for the threads is relating the 

threads’ IDs with the task they should perform. The algorithm that will be explained later shows how 

to accomplish this easily for face detection task. It also explains how to generalize the idea for any 

computationally intensive problem using only one dimension. 

3. VIOLA-JONES FACE DETECTION ALGORITHM 

The algorithm[1] tries to find a rectangular window of any size that contains a frontal face. The 

rectangular window size can vary from the smallest to the biggest. The smallest one can be used 

during the training phase of the algorithm. The biggest one can fit into the image being processed. The 

features set consists of different stages cascaded together as shown in Figure 2. Each window will 
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pass through the stages till it passes through the last one. This allows to further process promising 

window(s) in later stages and save the processing power when the window fails in the earlier stages.  

 

Figure 2: The cascaded stages that form the face detector. Early stages have fewer features and are easier to be 

passed; later stages have more features and are harder to be passed 

Each stage consists of two or more features, as shown in Figure 4. Each feature can be computed by 

subtracting the total gray scaled value for each pixel in the white rectangle(s) from the total gray 

scaled value for each pixel in the dark rectangle(s), as shown in Figure 3. There will be overlapping 

regions among the features. This is for each component to redo some of the work to calculate its 

value. This is by iterating through the same pixels. This calculates the total sum for their intensity. 

Viola-Jones algorithm solved this problem by introducing a new image representation. This image 

representation encodes the total sum of each region started from the top-left corner in the image and 

named this representation ‘integral image’.  

 

Figure 3: The four different rectangular features that compose the basic unit for detection stages 

 

Figure 4: Single stage structure that shows that the evaluation stage contains implicit parallelism that can be 

used to speed up stage evaluation 

The Integral Image (Figure 5) is represented by a 2D array. Each element in the array can be 

computed from the original image as stated in the equation below: 
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𝑖𝑖(𝑥, 𝑦) =  ∑ ∑ 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝑚𝑎𝑔𝑒(𝑖, 𝑗)
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𝑗=0

𝑥
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Figure 5: The integral image representation for an image with 4x4 pixels in size. The original image pixels all 

have the same intensity value of 1 

Using Integral image to compute the total sum of the gray area in Figure 6 will require only four 

memory access; two additions and two subtractions.  Increasing the image size will not affect this 

fact. The equation below shows how the gray area in Figure 6 is calculated: 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚 = 𝑖𝑖(𝑋𝑆1, 𝑌𝑆1) +  𝑖𝑖(𝑋𝑆3, 𝑌𝑆3) −  𝑖𝑖(𝑋𝑆2, 𝑌𝑆2) −  𝑖𝑖(𝑋𝑆4, 𝑌𝑆4) 

 

Figure 6:  Calculating the total sum of the gray area in the image can be made by using the corresponding 

elements s1, s2, s3 and 4 in the integral image 

4. RELATED WORK 

There are existing literatures on ways to speed up face detection. David Oro and colleagues have 

made remarkable efforts to optimize the integral image calculation on the GPU. They utilized the 

GPU hardware functionality to build a pyramid of scaled images to avoid scaling the haar-like 

features. This required computing the integral image for each scaled image. Of course, this is sensible 

as it avoids the scaling of the features with each frame. However, this added more work to be made on 

the GPU side which needs be made with each frame. While they state that the sliding window step 

size is 1 pixel, the calculations in the paper shows that the sliding window step size is equal to the 

width of the window. This leads to an exceptionally high frame rate on HD image, but it will fail to 

detect a face if it is divided between two sliding windows.  

Daniel Hefenbrock and colleagues attempted to find a solution to speed up the face detection on 

single and multiple GPUs. They divided the problem into multiple kernel launches each one scans 

window with certain scale. This resulted in limiting the number of possible concurrent threads as each 
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group will wait for the previous group to complete. They tried to fix that by doubling the number of 

threads working on each window and achieved a very good performance on a single GPU which 

reached 3.8 fps. However, the GPU utilization was not enhanced to utilize the GPU fully. 

Other approaches that studied the face detection on GPU used reduced features data set and are not 

presented here. However, there are faster implementation using FPGA and ASIC which achieved 16 

fps on the same image size we are targeting in this paper. 

5. GPU IMPLEMENTATION 

The proposed implementation in this paper avoids doing redundant tasks by pre-scaling the haar-like 

features to all possible scaling factors within the boundaries of the image size. Each working thread 

no longer needs to scale the features. In addition, it does not need to scale the image. This means that 

the GPU processing power will be used only to evaluate the features and stages. Also, it feeds the 

GPU with 1D job with very long dimension to hide memory latency while achieving the maximum 

memory bandwidth between the SMs and the device memory by sorting the threads based on the 

memory elements they will access frequently on the integral image. This required a setup phase to 

prepare the parameters for each thread. This is for each thread to take the right scaled features 

according to the window size it is working on. Also, each thread takes the windows position and size 

wherein each 32 consecutive threads will process 32 consecutive windows to achieve coalesced 

memory access. 

5.1 Implementation Constrains 

The targeted source image in the proposed implementation has VGA size of [640 x 480] and the 

smallest Window size of [20x20]. Equations 3 and 4 show the step size related to the window size and 

the number of window for different window sizes. The equation below shows the number of windows 

for every scale used in this implementation. 

𝑠𝑡𝑒𝑝 = max (2,
𝑊𝑤

8
) 

𝑁𝑊 =
(𝐼𝑤 − 𝑊𝑤)(𝐼ℎ − 𝑊ℎ)

𝑠𝑡𝑒𝑝2
 

Where: 

 𝑠𝑡𝑒𝑝 is the step used to slide the window either horizontally or vertically. 

 𝑊𝑤 is the sliding window width. 

 𝑁𝑊 is the number of windows that is needed to cover the whole image for certain window 

size. Given that the step size between each two consecutive windows is calculated 

beforehand. 

 𝐼𝑤 is the target image width, which is 640 pixels. 

 𝐼ℎ is the target image height, which is 480 pixels. 

 𝑊ℎ is the sliding window height,  in our case, equals to the sliding window width 𝑊𝑤 . 

Table 2: The number of sliding window that needs to be processed for the different window sizes in the 

proposed implementation 

Scaling Factor Window Size 

(pixels) 

Number of 

sliding windows 

13.85 277 * 277 63 

11.55 231 * 231 129 

9.6 192 * 192 224 

8 160 * 160 384 

6.65 133 * 133 687 

5.55 111 * 111 1155 

4.65 93 * 93 1749 

3.85 77 * 77 2801 

3.2 64 * 64 3744 

2.65 53 * 53 6962 

2.2 44 * 44 10394 
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1.85 37 * 37 16695 

1.55 31 * 31 30382 

1.25 25 * 25 31091 

1.05 21 * 21 71030 

5.2 Setup Phase 

The setup phase in the program will cover all the necessary calculations that can be made without the 

target image being known. This includes the following tasks: 

1. Load the features from disk for window size [20x20]. 

This step will result in two arrays; one that contains the features and another one that contains 

the start and end index for each stage. 

2. Scale the features to all possible scaling factors defined in Table 2. 

This will result in increasing the length of the features array resulted from step one by a factor 

of 16, as shown in Figure 7. 

3. Generate all possible window sizes and slide them with the step size defined in equation xxx. 

This will generate a windows array of length 177528 which is shown in Figure 8. 

4. Sort the generated windows list from step 3, such that each 32 consecutive elements achieve 

the memory coalesced memory access when the GPU kernel starts processing the frames. 

5. Load and compile the OpenCL kernel and its accessory functions. 

6. Send all the generated parameters from the previous steps to the GPU device-memory. 

Each step in the setup phase will fill a certain data structure in the system memory, and the final step 

will move all the generated data structure to the device-memory. The setup phase output is shown in 

Figure 7 and Figure 8.  

 

Figure 7: The array of features which contains 16 elements. Each element contains an array of features for 

certain scaling factor. Also, the feature data structure is presented in part C and D 

Figure 7 shows the array of the scaled features. As the features will be scaled to 16 different scaling 

factors, this array contains 16 elements. Each element represents an array of 2135 feature. Each 

feature in Figure 3 can be represented by 2 rectangles. However, all the features here will be presented 

by 3 rectangles even if it needs only two rectangles. This is to avoid inconsistent data types. This data 

structure does not satisfy the need to split the features into stages. Hence, another array that defines 

the start index of each stage was needed. To get the features that belong to certain stages, as shown in 

Figure 2, the following formula will be used. 

𝑖𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥 =  𝑆𝑡𝑎𝑔𝑒𝑠𝐼𝑛𝑑𝑖𝑐𝑒𝑠[𝑆𝑡𝑎𝑔𝑒𝐼𝑑𝑥] 
𝑖𝐸𝑛𝑑𝐼𝑑𝑥 =  𝑆𝑡𝑎𝑔𝑒𝑠𝐼𝑛𝑑𝑖𝑐𝑒𝑠[𝑆𝑡𝑎𝑔𝑒𝐼𝑑𝑥 + 1] 
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The 𝑆𝑡𝑎𝑔𝑒𝑠𝐼𝑛𝑑𝑖𝑐𝑒𝑠 array contains 23 elements as there will be extra elements to handle a special 

case for the last stage. Each thread can use the 𝑆𝑡𝑎𝑔𝑒𝑠𝐼𝑛𝑑𝑖𝑐𝑒𝑠 array to get the start and end indexes, 

but this will referee to the features in the first array of the 16 arrays stored in Figure 7.A. So each 

thread will add 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑡𝑎𝑟𝑡𝑂𝑓𝑓𝑠𝑒𝑡 value to the calculated start and end indexes. This will cause 

each thread to access the right scaled features for this stage. 

 

Figure 8: The array of generated windows that will cover the target image with all possible window sizes at all 

possible positions 

Figure 8 shows the array that is generated in step 3, which is an array containing each sliding window 

position and the scale factor for this window and 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑡𝑎𝑟𝑡𝑂𝑓𝑓𝑠𝑒𝑡. Given the scaled features 

and the window position, as well as the integral image of the image, the detection thread can detect 

whether there is a face in this window or not. For each thread, there is a flag to store this result. 

Finally, a scan through these flags will render the image to the screen with the detected face. 

5.3 Detection Phase 

The detection phase will be executed with each new frame. It will scan each new frame for a possible 

face and render the frame with green rectangles around the faces. This phase is divided into the 

following steps: 

1. Capture new frame from Camera/Video Stream/Disk Drive. 

2. Convert the image to gray scale. 

3. Calculate the integral image for the captured frame. 

4. Send the integral image to the GPU device-memory. 

5. Invoke a single kernel launch which will start the detection threads on the GPU. 

6. Read the result from the GPU. 

7. Remove overlapping rectangles. 

8. Render the frame with rectangles around the detected faces. 

The detection phase’s key step is launching the kernel on the GPU and wait till the GPU finishes the 

job. 

6. EXPERIMENTAL RESULTS 

The experiments were conducted on different GPUs with the same image set. Each GPU 

specifications are listed in Table 3. Comparing the GPUs in terms on raw processing power cannot be 

achieved as there are complicated factors that affect the GPU performance which are: 

1. Number of GPU cores (SM) 

2. The processor speed of each core. 

3. The memory speed. 

4. The bandwidth between the GPU cores and the memory. 

5. The core capability which is not applicable as all the GPUs used in the experiments are 

NVidia GPUs. 

According to these complicated factors getting an indication which GPU is better cannot be achieved 

as it will depend on the application. Some applications which do not require any memory access will 

run faster if the raw processor power is higher. Other applications which have a huge amount of data 

will require more sophisticated analysis to calculate the performance index of the GPU. The 

0 88764 177526 177527 A

BScale X Y FeatureStartOffset
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conducted experiments on the 3 different GPUs listed in Table 3 show that it is almost linear with the 

raw processing power this is because the designed kernel does not hit the memory frequently and 

caches the data in private cache to avoid accessing the memory a lot. 

Table 3 GPUs Specifications 

GPU Model Number of 

SM 

Processor 

Clock 

(MHz) 

Memory Bus Memory Clock 

(MHz) 

GeForce 

310M 

16 1530 64-bit 800 

GeForce GT 

240 

96 13410 128-bit 1000 

GeForce 

GTX 560 

336 1620 256-bit 2000 

Another factor that affected the performance was the number of faces in the test images. When the 

number of faces increases the time required to process this image/frame increases. This is because the 

number of sliding window that passes through the 22 stage are increased which in turn increases the 

processing time. Figure xxx shows the performance change on the same GPU for different images. 

 

Figure 9 number of faces per frame against the required time in MS to process each frames 

7. CONCLUSION 

The proposed implementation shows that FPGA and ASIC performance can be achieved with GPU 

solutions.  The paper has discussed the parallel parts in Viola-Jones face detection algorithm and how 

to utilize the GPU efficiently. The paper has proposed a new implementation that removes all 

duplicated effort in scaling the features to the target window size. This approach achieves a great 

performance enhancement compared to other GPU and FPGA implementations. However the memory 

usage was multiplied by factor of 16 for the initial data set while trying to reduce the OpenCL code so 

it can fit into the instruction cache. Sorting the work-items in the right way to get more benefit from 

the GPU architecture allows coalesced memory access within a work-group to be performed in 

parallel. 

Recommendations of this paper include several rules to achieve better performance on GPU. 

Reducing the Kernel code size such that it can fit into the cache can be achieved by moving the 

repeated code with each frame to be processed only once on the hosting CPU platform. 

Sorting the work-items to achieve the coalesced memory access pattern can be easily made if the 

work-item has the complete set of parameters that define which data set to manipulate of course the 

work-item should not depend on its global or local ids. 

Finally, it worth mentioning that there is a trade of between resolving data dependency and the kernel 

code size. 
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